

SOPORTE TECNIQCO Y PEDIDOS

Última versión: www.biolabo.fr

ALT TGP (IFCC)

Reactivo para la dosificación cuantitativa de la actividad Alanina aminotransferasa (ALT)

[EC 2.6.1.2] en suero y plasma humano

REF LP80507 R1 4 x 30 mL R2 1 x 30 mL REF LP80607 R1 4 x 100 mL R2 1 x 100 mL

Made In France

I: corresponde a las modificaciones significativas

USO PREVISTO

Tel: (33) 03 23 25 15 50

support@biolabo.fr

Esto reactivo es destinado a personal cualificado, para un uso en el laboratorio (manual/automático método).

I Permite la determinación cuantitativa de la Alanina aminotransferasa (ALT) [EC 2.6.1.2] para evaluar sus tasa en el suero y plasma humano

GENERALIDADES (1) (2)

El ALT está muy extendido en los tejidos hepáticos y renales, y en menor medida en el musculo esquelético y cardiaco. Aunque la actividad ALT y AST aumentan en el suero cual sea el daño de las células hepáticas, el ALT es la enzima más específica.

Un aumento importante de la actividad ALT en el suero o en el plasma se observa raramente en otras condiciones que la de un daño hepático (cirrosis, carcinoma, hepatitis, icteria por obstrucción biliar o congestión hepática).

PRINCIPIO (4) (5) (6)

Método desarrollado por Wrobleski y La Due, optimizado por Henry y Bergmeyer (conforme a las recomendaciones del IFCC). El esquema reacciónale es el siguiente:

L- Alanina + 2-Oxoglutarato

Piruvato + L-Glutamato

Piruvato + NADH + H+

L-Lactato + NAD⁻

La disminución de la absorbencia debida a la conversión del NADH en NAD+, es proporcional a la actividad ALT en la muestra, medida a 340 nm

La ausencia de P₅P contribuye a una gran mejora de la estabilidad del reactivo reconstituido

REACTIVOS

BUF ENZ ALT Tampón Enzimas R1 L-Alanina 700 mmol/L > 2500 UI/L LDH **EDTA** 6 mmol/l Tampón Tris 135 mmol/L pH a 30°C 7,50 <u>+</u> 0.1 Conservante

COENZ ALT R2 Coenzima Tampón Tris 20 mmol/l **NADH** < 1,4 mmol/L 2-Oxoglutarato 80 mmol/L Conservante

Conforme al reglamento 1272/2008, estos reactivos no están clasificados como peligrosos.

PRECAUCIONES

- Consultar la FDS vigente disponible por petición o en www.biolabo.fr
- Verificar la integridad de los reactivos antes de su utilización.
- Eliminación de los desechos: respetar la legislación vigente.
- Tratar toda muestra o reactivo de origen biológico como potencialmente infeccioso. Respetar la legislación vigente.

Todo incidente ocurrido en relación con el dispositivo es objeto de una notificación al fabricante y a la autoridad competente del Estado miembro en el cual el usuario y/o el paciente está establecido.

PREPARACION DE LOS REACTIVOS

Listo para el uso

ESTABILIDAD E INSTRUCCIONES DE ALMACENAMIENTO

Almacenar protegido de la luz, en el vial de origen bien cerrado a 2-8°C, los reactivos son estables, si son utilizados y conservados en las condiciones preconizadas:

Antes de abrir

- hasta la fecha de caducidad indicada en la etiqueta de la caja Después de abrir:
- Transvasar la cantidad necesaria, cerrar el vial y almacenar a 2-8°C
- Los reactivos son estables 6 meses en ausencia de contaminación.
- No utilizar los reactivos si están turbios o si el blanco reactivo a 340 nm es < 1,000.

TOMA Y PREPARACION DE LA MUESTRA (2) (7)

Sueros no hemolizados, no utilizar plasma heparinizado.

La ALT es estable en el suero o el plasma:

- · 24 horas a temperatura ambiente
- 7 días a 2-8°C

LIMITES (3) (6)

El LDH contenido en el reactivo permite, durante la fase de preincubación, reducir el piruvato endógeno que si no produciría una interferencia positiva.

Tasas elevadas de ALT pueden conducir a una depleción en NADH durante la fase de pre-incubación, conduciendo a resultados erróneos por defecto. En el caso de muestras lipémicas o ictéricas, el aumento de la absorbencia de la mezcla reacciónale puede esconder este fenómeno. Se recomienda controlar estas muestras diluyéndolas (1 + 4) en una solución de NaCl 9 g/L.

Young D.S. ha publicado una lista de las sustancias que interfieren con la prueba.

REACTIVOS Y MATERIAL COMPLEMENTARIOS

- Equipamiento de base del laboratorio de análisis médico.
- Espectrofotómetro o analizador de bioquímica clínica.

CONTROL DE CALIDAD

- REF 95010 EXATROL-N Tasa I
- REF 95011 EXATROL-P Tasa II
- Programa externo de control de calidad.

Se recomienda controlar en los siguientes casos:

- · Por lo menos un control por serie.
- Por lo menos un control cada 24 horas.
- · Cambio de vial de reactivo.
- Después de operación de mantenimiento del analizador.

Cuando un valor de control esta fuera de los límites de confianza, aplicar las siguientes acciones:

- 1. Preparar un suero de control reciente y repetir el test.
- 2. Si el valor obtenido sigue estando fuera de los límites, utilizar otro reciente vial de calibrador
- 3.Si el valor obtenido sigue estando fuera de los límites, calibrar con otro vial de reactivo.

Si el valor obtenido sigue estando fuera de los límites, contactar el servicio técnico BIOLABO o el distribuidor local.

INTERVALOS DE REFERENCIA (2)

	(UI/L) 37°C	
Recién nacidos, niños	13-45	
Hombres	10-40	
Mujeres	7-35	

Se recomienda a cada laboratorio definir sus propios intervalos de referencias para la población estimada.

PRESTACIONES

Sobre Kenza 240TX, 37°C, 340 nm. Dominio de medida: entre 10 y 390 UI/L

Límite de detección: aproximadamente 9 UI/L

Precisión:

Intra-serie N = 20	Tasa baja	Tasa media	Tasa elevada
Media UI/L	19,9	55,6	185,7
S.D. UI/L	0,9	2,0	2,5
C.V%	4,3	3,6	1,4

Inter-serie N = 20	Tasa baja	Tasa media	Tasa elevada
Media UI/L	19,7	55,6	185,0
S.D.UI/L	1,0	2,5	5,0
C.V%	4,9	4,6	2,7

Sensibilidad analítica: aprox. 0,0057 abs/min para 10 UI/L

Interferencias:

Bilirrubina total	Interferencia negativa a partir de 219 µmol/L
Bilirrubina directa	No hay interferencia hasta 420 µmol/L
Ácido ascórbico	No hay interferencia hasta 25 g/L
Glucosa	No hay interferencia hasta 10,6 g/L
Turbidez	Interferencia positiva a partir de 0,152 abs
Hemoglobina	Interferencia positiva a partir de 128 µmol/L

Otras sustancias son susceptibles de interferir (ver § Limites)

Comparación con un reactivo del comercio:

Estudios realizados sobre suero humano (n=100) entre 5 y 400 UI/L

y = 0.9900 x + 0.2592r = 0.9985

Estabilidad a bordo: los reactivos separados son estables 30 días.

Frecuencia de calibración: 30 días

Efectuar una nueva calibración en caso de cambio de lote de reactivo, si los resultados de los controles están fuera del intervalo establecido, y después de operación de mantenimiento.

CALIBRACION

REF 95015 Multicalibrator trazable sobre ERM-AD454k

La frecuencia de calibración depende de las prestaciones del analizador y de las condiciones de conservación del reactivo

MODO DE EMPLEO

I Método manual

Poner los reactivos y muestras a temperatura ambiente.

Introducir en una cuba de lectura de 1 cm de trayecto óptico, thermostada a 37°C:			
Reactivo 1	800 μL		
Reactivo 2	200 μL		
Mezclar. Dejar la temperatura equilibrarse a 37°C y luego añadir:			
Calibrador, Control o Muestra	100 μL		
Mezclar, Después de 60 segundos, leer la absorbencia inicial a 340 nm, y todos			

zclar. Despues de 60 segundos, leer la absorbencia inicial a 340 nm, y todos 60 segundos durante 180 segundos.

Calcular la media de las variaciones de absorbencia por minuto (ΔAbs/min).

- 1.Las prestaciones en técnica manual deberán ser establecidas por el
- 2.Las aplicaciones Kenza y otras propuestas de aplicaciones están disponibles por petición.

CALCULO

Con multicalibrador sérico:

Actividad ALT =
$$\frac{(\triangle Abs/min) Dosificación}{(\triangle Abs/min) Calibrador} \times Actividad$$
 del Calibrador

Con factor teórico:

Actividad en U/L = Δ Abs/min x Factor

Factor =
$$\frac{\text{VR x 1000}}{6.3 \text{ x VE x P}}$$

Con:

VR = Volumen reacciónale total en mL

VE = Volumen Muestra en mL

6.3 = Coeficiente de extinción molar del NADH a 340nm

P = Travecto óptico en cm.

Ejemplo, en técnica manual,

(1 cm de trayecto óptico, a 37°C, 340 nm):

 $UI/L = (\Delta Abs/min) \times 1746$

$$\mu$$
Kat/L = $\frac{\text{UI/L}}{60}$

BIBLIOGRAFIA

- TIETZ N.W. Text book of clinical chemistry, 3rd Ed. C.A. Burtis, E.R.
- Ashwood, W.B. Saunders (1999) p. 652-657 Clinical Guide to Laboratory Test, 4th Ed., N.W. TIETZ (2006) p. 64-67 YOUNG D.S., Effect of Drugs on Clinical laboratory Tests, 4th Ed. (1995) p. (3) 3-6 à 3-16
- HENRY R. J. et al., Am J clin Path (1960), 34, 398
- Bergmeyer HU., et al. Clin. Chem. (1978), 24, p.58-73
- IFCC Method for L-Alanine aminotransferase. J Clin. Chem., Clin. Biochem. (1986), 24, p.481-495).
- MURRAY RL., «Alanine aminotransferase » in clinical chemistry. Theory, analysis, and correlation. Kapan LA, Pesce AJ, (Eds), CV Mosby St Louis (1984): 1090