

CHOLESTEROL-HDL Méthode directe

Réactif pour le dosage quantitatif du Cholestérol-HDL dans le sérum et le plasma humains

I REF K1206	R1	2 x 15 mL	R2	1 x 10 mL
I REF K2206	R1	1 x 30 mL	R2	1 x 10 mL
I REF K4206	R1	2 x 30 mL	R2	1 x 20 mL
I REF 95506	Calibrator er	nclosed R1	1 x 2 mL R2	1 x 5 mL

SUPPORT TECHNIQUE ET COMMANDES

Tel: (33) 03 23 25 15 50 support@biolabo.fr Dernière révision : www.biolabo.fr CE

I: correspond aux modifications significatives

IVD

Made In France

USAGE PREVU

Ce réactif est réservé pour un usage professionnel en laboratoire (méthode automatisée)

I II permet le dosage quantitatif du Cholestérol-HDL dans le sérum et le plasma humains.

GENERALITES (1) (3)

On considère que le rôle majeur des lipoprotéines de haute densité (HDL) est le transfert du cholestérol depuis les tissus périphériques vers le foie. Les HDL exercent un effet protecteur vis à vis de l'athérosclérose en général et en particulier de l'athérosclérose coronarienne. La diminution du taux de Cholestérol-HDL est donc un indicateur de risque athérogène. L'augmentation du rapport Cholestérol Total/Cholestérol-HDL, significative d'un risque athérogène accru.

PRINCIPE

Méthodologie « détergent sélectif et accélérateur » Méthode directe, sans pré-traitement du spécimen.

Au cours de la première phase, les particules LDL, VLDL, et Chylomicrons libèrent du Cholestérol libre qui, soumis à une réaction enzymatique, produit du péroxyde d'hydrogène, lequel est dégradé sous l'effet de la réaction avec la POD et le DSBmT. Aucun dérivé coloré n'est formé.

Au cours de la seconde phase, un détergent spécifique solubilise le cholestérol-HDL. Sous l'action combinée de la CO et CE, le couple POD + 4-AAP développe une réaction colorée proportionnelle à la concentration en cholestérol-HDL. La lecture s'effectue à 600 nm.

LDL = Lipoprotéines de basse densité HDL = Lipoprotéines VLDL = Lipoprotéines de très basse densité POD =Peroxydase HDL = Lipoprotéines de haute densité

Cholestérol Oxydase CE = Cholestérol Estérase

Réactif Accélérateur

4-AAP = 4-Aminoantipyrine AAO = Ascorbate Oxydase

DSBmT = N,N-bis (4-sulphobutyl)-m-toluidine-disodium

REACTIFS

R1

HDL

Tampon de Good < 1000 UI/L CO POD < 1300 ppg UI/L DSBmT < 1 mmol/L < 3000 UI/L AAO Accélérateur < 1 mmol/L < 0,06 Conservateur HDL Détergent Sélectif Tampon de Good

< 1500 UI/L CE 4-AAP mmol/L < 1 Détergent < 2 % Stabilisant < 0,15 % Conservateur < 0,06

EUH210 Fiche de données de sécurité disponible sur demande EUH208 Contient CO, POD, CE. Peut produire une réaction allergique

Conformément à la règlementation 1272/2008, ces réactifs ne sont pas classés comme dangereux

PRECAUTIONS

- Consulter la FDS en vigueur disponible sur demande ou sur www.biolabo.fr
- Vérifier l'intégrité des réactifs avant leur utilisation.
- Elimination des déchets : respecter la législation en vigueur.
- Traiter tout spécimen ou réactif d'origine biologique potentiellement infectieux. Respecter la législation en vigueur.

I Tout incident grave survenu en lien avec le dispositif fait l'objet d'une notification au fabricant et à l'autorité compétente de l'État membre dans lequel l'utilisateur et/ou le patient est établi.

PREPARATION DES REACTIFS

Prêts à l'emploi.

STABILITE ET CONSERVATION

Stockés à l'abri de la lumière, dans le flacon d'origine bien bouché à 2-8°C, les réactifs sont stables, s'ils sont utilisés et conservés dans les conditions préconisées :

Avant ouverture:

• jusqu'à la date de péremption indiquée sur l'étiquette.

Après ouverture,

- Les réactifs séparés sont stables jusqu'à 3 mois à 2-8°C, 24 h à température ambiante
- Rejeter tout réactif trouble ou si le blanc réactif à 620 nm > 0,050.

Ce réactif doit être réfrigéré pendant le transport.

PRELEVEMENT ET PREPARATION DU SPECIMEN (4)

Le patient doit être prélevé après au moins 12 h-14 h de jeûne

Plasma: prélevé sur EDTA ou héparinate de sodium ou de lithium. Séparer par centrifugation le plasma des cellules sanguines dans les 3 heures après prélèvement.

Sérum : Séparer par centrifugation le sérum des cellules sanguines dans les 3 heures après prélèvement.

Les sérums et plasmas ne doivent pas rester plus de 14 h à température ambiante.

Le cholestérol-HDL est stable dans le spécimen :

- 1 à 3 jours à 2-8°C
- 1 mois à –20°C

LIMITES (5)

Le réactif est susceptible d'interférer avec le dosage du magnésium.

REACTIFS ET MATERIEL COMPLEMENTAIRES

- 1. Equipement de base du laboratoire d'analyses médicales.
- 2. Analyseur automatique de biochimie Kenza One, Kenza 240TX/ISE ou Kenza 450TX/ISE

INTERVALLES DE REFERENCE (6)

Sérum or plasma	g/L	[mmol/L]
Taux faible (facteur de risque)	< 0,40	< 1,0
Taux élevé (facteur protecteur)	<u>≥</u> 0,60	<u>≥</u> 1,5

Il est recommandé à chaque laboratoire de définir ses propres valeurs de référence pour la population concernée.

PERFORMANCES

Sur analyseur Kenza 240TX, 37°C, 620 nm Domaine de mesure : entre 0,09 g/L et 1,89 g/L Limite de détection : environ 0,003 g/L

Précision:

Intra-série	Taux	Taux	Taux
N = 20	normal	moyen	élevé
Moy (g/L)	0,36	0,52	1,03
S.D. g/L	0,008	0,011	0,017
C.V. %	2,1	2,1	1,6

Inter-série	Taux	Taux	Taux
N = 20	normal	moyen	élevé
Moy (g/L)	0,32	0,48	1,00
S.D. g/L	0,01	0,015	0,02
C.V. %	3,2	3,1	2,0

Comparaison avec réactif liquide du commerce :

Réalisée sur sérums humains entre 0,14 et 0,96 g/L (n=94)

y = 1,0438 x + 0,0177 r = 0,9908

Sensibilité analytique : approx. 0,012 abs pour 0,1 g/L

Interférences:

Turbidité	Pas d'interférence jusqu'à 0,171 abs.
Bilirubine totale	Pas d'interférence jusqu'à 369 µmol/L
Bilirubine directe	Pas d'interférence jusqu'à 457 µmol/L
Acide ascorbique	Pas d'interférence jusqu'à 25 g/L
Glucose	Pas d'interférence jusqu'à 9,5 g/L
Hémoglobine	Pas d'interférence jusqu'à 317 µmol/L

D'autres substances sont susceptibles d'interférer (voir § Limites)

Stabilité à bord : 2 mois

Stabilité de la calibration : 24 heures

Effectuer une nouvelle calibration en cas de changement de lot de réactif, si les résultats des contrôles sont hors de l'intervalle établi, et après opérations de maintenance.

Les données de performances et stabilité sur Kenza 450TX/ISE et Kenza One sont disponibles sur demande.

CALIBRATION

• REF 95506 Calibrateur HDL LDL CK-MB traçable sur SRM® 1951

La fréquence de calibration dépend des performances de l'analyseur et des conditions de conservation du réactif.

CONTRÔLE DE QUALITE

- REF 95516 Contrôle HDL LDL CK-MB Taux 1
- REF 95526 Contrôle HDL LDL CK-MB Taux 2
- Programme externe de contrôle de la qualité.

Il est recommandé de contrôler dans les cas suivants :

- Au moins un contrôle par série.
- Au moins un contrôle par 24 heures.
- Changement de flacon de réactif.
- Après opération de maintenance sur l'analyseur.

Lorsqu'une valeur de contrôle se trouve en dehors des limites de confiance, appliquer les actions suivantes :

- 1. Préparer un sérum de contrôle frais et répéter le test.
- Si la valeur obtenue reste en dehors des limites, utiliser un flacon de calibrant frais.
- 3.Si la valeur obtenue reste en dehors des limites, répéter le test en utilisant un autre flacon de réactif.

Si la valeur obtenue reste en dehors des limites, contacter le service technique BIOLABO ou le revendeur local.

MODE OPERATOIRE

Se référer à l'application validée de l'analyseur Kenza utilisé

CALCUL

L'analyseur fournit directement le résultat final. Se référer à la notice de l'analyseur Kenza utilisé

REFERENCES

- Badimon L. L., Badimon L., Fuester V., Regression of atherosclerotic lesions by HDL plasma fraction in the Cholesterol-fed rabbit, Journal of clinical investigation, (1990), 85, p.1234-1241.
- (2) Clinical Guide to Laboratory Test, 4th Ed., N.W. TIETZ (2006) p. 564-569
- (3) Gotto, A.M., Lipoprotein metabolism and the ethiology of hyperlipidemia, Hospital Practice, 23; Suppl. 1, 4 (1988)
- (4) Warnick, G. Russel, Wood, Peter D., National Cholesterol Education Program Recommendations for Measurement of High-Density Lipoprotein Cholesterol: Executive Summary, Clinical Chemistry, Vol. 41, No 10, 1427-1433 (1995)
- (5) National Committee for Clinical Laboratory Standards, National Evaluation Protocols for Interference Testing, Evaluation Protocol No 7, Vol. 6, No 13, (Aug. 1986).
- (6) Recommandations de l'AFSSAPS sur la prise en charge thérapeutique du patient dyslipémique, p.9 (Mars 2005).

Licence n° PCT/JP97/04442, PCT/JP00/03860

