CHOLESTEROL
CHOD PAP Method
Reagent for quantitative determination of Total Cholesterol in human serum or plasma

<table>
<thead>
<tr>
<th>REF</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>80106</td>
<td>2 x 100 mL</td>
<td>2 x 100 mL</td>
<td>1 x 5 mL</td>
</tr>
<tr>
<td>87356</td>
<td>10 x 100 mL</td>
<td>10 x 100 mL</td>
<td>1 x 5 mL</td>
</tr>
<tr>
<td>87656</td>
<td>6 x 500 mL</td>
<td>6 x 500 mL</td>
<td>1 x 10 mL</td>
</tr>
</tbody>
</table>

TECHNICAL SUPPORT AND ORDERS
Tel : (33) 03 23 25 15 50
Fax: (33) 03 23 256 256

CLINICAL SIGNIFICANCE
Total cholesterol assay, associated to assays of other lipids in serum is used in the diagnosis of hyperlipidemia. Increased levels are also seen in hepatic and thyroid disorders.

Total cholesterol assay associated to triglycerides, HDL-Cholesterol and LDL-Cholesterol determination is useful in the prediction of coronary heart diseases. So this assay is used in the diagnosis and treatment of atherosclerotic diseases. Hypercholesterolemia can also be observed in certain cases of diabetes. Secondary disorders that elevate cholesterol levels, should be ruled prior to initiating therapy with cholesterol-lowering drugs.

PRINCIPLE
Enzymatic method described by Allain and al., which reaction scheme is as follows:

\[
\text{Cholesterol esters} \xrightarrow{CE} \text{Cholesterol + free fatty acids}
\]
\[
\text{Cholesterol + } O_2 \xrightarrow{CO} \text{Cholestene 4 one 3 + } H_2O_2
\]
\[
2 H_2O_2 + Phenol + PAP \xrightarrow{POD} \text{Quinoneimine (pink) + 4 } H_2O
\]

REAGENTS COMPOSITION

<table>
<thead>
<tr>
<th>Vial R1</th>
<th>BUFFER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate buffer</td>
<td>100 mmol/L</td>
</tr>
<tr>
<td>Chloro-4-phenol</td>
<td>5 mmol/L</td>
</tr>
<tr>
<td>Sodium Cholate</td>
<td>2.3 mmol/L</td>
</tr>
<tr>
<td>Triton x 100</td>
<td>1.5 mmol/L</td>
</tr>
<tr>
<td>Preservative</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vial R2</th>
<th>ENZYMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol oxidase (CO)</td>
<td>≥ 100 IU/L</td>
</tr>
<tr>
<td>Cholesterol esterase (CE)</td>
<td>≥ 170 IU/L</td>
</tr>
<tr>
<td>Peroxydase (POD)</td>
<td>≥ 1200 IU/L</td>
</tr>
<tr>
<td>4 - Amino – antipyrine (PAP)</td>
<td>0.25 mmol/L</td>
</tr>
<tr>
<td>PEG 6000</td>
<td>167 µmol/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vial R3</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol 200 mg/dL (5.17 mmol/L)</td>
<td></td>
</tr>
</tbody>
</table>

SAFETY CAUTIONS
BIOLABO reagents are designated for professional, in vitro diagnostic use.

- Verify the integrity of the contents before use.
- Use adequate protections (overall, gloves, glasses).
- Do not pipette by mouth.
- In case of contact with skin and eyes, thoroughly wash affected areas with plenty of water and seek medical advise.
- Reagents contain sodium azide (concentration < 0.1%) which may react with copper and lead plumbing. Flush with plenty of water when disposing.
- Material Safety Data Sheet is available upon request.
- Waste disposal: Respect legislation in force in the country. All specimens should be handled as potentially infectious, in accordance with good laboratory practices using appropriate precautions. Respect legislation in force in the country.

REAGENTS PREPARATION
Add promptly the content of vial R2 (Enzymes), into vial R1 (Buffer). Mix gently until complete dissolution (approximately 2 minutes).

Vial R2: If appropriate, use a non-sharp instrument to remove aluminium cap.

STABILITY AND STORAGE
Store at 2-8°C, well recap in the original vial and away from light.

- Standard (vial R3): Transfer the requested quantity, recap and store at 2-8°C.
- Reagents are stable until expiry date stated on the label of the kit when stored and used as described in the insert.
- Working reagent is stable at least for 2 years.
- Discard any reagent if cloudy or if reagent blank at 500 nm > 0.400.
- Don’t use working reagent after expiry date stated on the label of the Kit.

SPECIMEN COLLECTION AND HANDLING

- Serum or plasma (Heparin or EDTA);
- Do not use oxalate, fluoride or citrate. Collect on fasting patient. Separate serum from cells within 2 hours.
- Cholesterol is stable in the specimen for:
 - 5-7 days at 2-8°C
 - 3 months at –20°C
 - Many years at –70°C.
- Avoid repeated freezing and thawing.
INTERFERENCES (2) (3) (5)

Ascorbic acid: Negative interference above 5 mg/dL.
Haemoglobin: Positive interference above 33 mg/dL.
Bilirubin: Negative interference above 8.6 mg/dL.
Lipemia: Low interference limited by CE lipase activity.

Enzymatic methods increase analytic specificity. CO also reacts with 3β-hydroxycholesterols (insignificant quantity in human serum – i.e. DHEA, pregnenolone).

For a more comprehensive review of factors affecting this assay refer to the publication of Young D.S or N. W. Tietz.

MATERIALS REQUIRED BUT NOT PROVIDED

1. Basic medical analysis laboratory equipment.
2. Normal and pathological control sera.

CALIBRATION (6)

- Kit standard (vial R3) or BIOLABO Multicalibrator RE 95015
- Traceable to SRM 909b.
- Or any calibrator traceable to reference method or material.

The calibration frequency depends on proper instrument functions and on the preservation of the reagent.

It is recommended to calibrate in the following cases:
1. When changing vial of reagent.
2. After maintenance operations on the instrument.
3. When control values are out of range, even after using a new vial of fresh serum.

QUALITY CONTROL

- BIOLABO EXATROL-N Level I RE 95010.
- BIOLABO EXATROL-P Level II RE 95011.
- Other assayed control sera referring to the same method.
- External quality control program.

It is recommended to control in the following cases:
1. At least once a run.
2. At least once within 24 hours.
3. When changing vial of reagent.
4. After maintenance operations on the instrument.

For a more comprehensive review of factors affecting this assay refer to the publication of Young D.S or N. W. Tietz.

EXPECTED VALUES (2)

Values for adults, estimated in term of risk for atherosclerotic diseases:

<table>
<thead>
<tr>
<th>Total cholesterol</th>
<th>mg/dL</th>
<th>[mmol/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended values</td>
<td>< 200</td>
<td>[< 5.18]</td>
</tr>
<tr>
<td>Low risk</td>
<td>200-239</td>
<td>[5.18-6.19]</td>
</tr>
<tr>
<td>High risk</td>
<td>> 240</td>
<td>[≥ 6.22]</td>
</tr>
</tbody>
</table>

Each laboratory should establish its own normal ranges for the population that it serves.

PERFORMANCE CHARACTERISTICS (4)

<table>
<thead>
<tr>
<th>Within run N = 30</th>
<th>Normal level</th>
<th>High level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean mg/dL</td>
<td>149</td>
<td>217</td>
</tr>
<tr>
<td>S.D. mg/dL</td>
<td>1.25</td>
<td>1.89</td>
</tr>
<tr>
<td>C.V. %</td>
<td>0.84</td>
<td>0.87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Between run N = 33</th>
<th>Normal level</th>
<th>High level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean mg/dL</td>
<td>125</td>
<td>261</td>
</tr>
<tr>
<td>S.D. mg/dL</td>
<td>1.04</td>
<td>2.06</td>
</tr>
<tr>
<td>C.V. %</td>
<td>0.83</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Detection limit: approximately 1 mg/dL
Sensitivity for 100 mg/dL: 0.235 ± 0.035

Comparison study with commercially available reagent:

\[y = 0.957 x + 6.4 \quad r = 0.9904 \]

LINEARITY

The reaction is linear up to at least 500 mg/dL (12.9 mmol/L). Above, dilute the specimen with saline solution and reassyay taking into account dilution factor. Linearity limit depends on specimen/reagent ratio.

MANUAL PROCEDURE

Let stand reagent and specimens at room temperature.

<table>
<thead>
<tr>
<th>Pipette into well identified test tubes:</th>
<th>Blank</th>
<th>Standard</th>
<th>Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent</td>
<td>1 mL</td>
<td>1 mL</td>
<td>1 mL</td>
</tr>
<tr>
<td>Demineralised water</td>
<td>10 µL</td>
<td>10 µL</td>
<td>10 µL</td>
</tr>
<tr>
<td>Standard</td>
<td>10 µL</td>
<td>10 µL</td>
<td>10 µL</td>
</tr>
<tr>
<td>Specimen</td>
<td>10 µL</td>
<td>10 µL</td>
<td>10 µL</td>
</tr>
</tbody>
</table>

Mix. Let stand for 5 minutes at 37°C or 10 minutes at room temperature.

Record absorbances at 500 nm (480-520) against reagent blank.

For a more comprehensive review of factors affecting this assay refer to the publication of Young D.S or N. W. Tietz.

CALCULATION

Calculate the result as follows:

\[\text{Result} = \frac{\text{Abs (Assay)}}{\text{Abs (Standard)}} \times \text{Standard concentration} \]

REFERENCES

(3) YOUNG D.S., Effect of Drugs on Clinical laboratory Tests, 4th Ed. (1995) p. 3-143 to 3-164
(6) SRM: Standard Reference Material®